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Presentation Outline

• Framework for Analysis

• Important Considerations in Experimental
Design for Large Scale Systems

• Resampling Methodology

• Example

• Larger Problems

• Further Applications and Conclusions
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In an Ideal (Computing) World
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In an (Less) Ideal (Computing) World --
 We have to Model the Response with a ‘Response Surface’
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Objective of the Experimental Design

The objective of  a good experimental design approach for
computer analyses is to select a set simulations that will
produce the most relevant information at the least expense.
Given well defined project or analysis goals, relevant
information can often be expressed in terms of the
precision with which performance criterion can be
estimated.

In terms of the previous slides, a good experimental design
will reduce the impact of response modeling uncertainty on
performance measure precision as much as possible for a
fixed number of computer runs.



12610•9/9/1999• dj;PP6

Experimental Design Process
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Estimate of the Response and
Response Uncertainty
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Important Considerations in Experimental
Design for Large Scale Systems

At any test location:
1 Is the response of any consequence to the performance measure?
2 How well are the responses at this location already known?
3 How likely is this set of inputs?
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 Other Approaches to Selecting Runs

Method Input
U ncertain t y

Res p o n se
U ncertain t y

Performa nce
U ncertain t y

SAM PLING
 M o nte C arlo Yes N o N o
 Latin  H y perc u be Yes Yes N o
 Importance  Sampli n g N o N o Yes

RES PON SE SUR FAC E
  R SM N ot Generally Yes N o
  Stoch astic S urfaces N ot Generally Yes N o

OTHER
  A naly tical or Reliab ilit y Yes N o Yes
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Approach for the Proposed
Methodology

1 Construct a probabilistic representation of the response
(stochastic simulation)

2 Select and compare candidate designs for their
‘potential relevant information’

3 Use this representation to evaluate the relevant
information that might be gained for a specific
‘candidate design’

4 Choose the design that indicates the highest potential
for reducing the modeling uncertainty
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‘Stochastic Simulation’   #1

System Response
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Stochastic Simulation (continued)

An ensemble of realizations constructed through
stochastic simulation provides a discrete
approximation to a probability measure over the
response surface -- much as a histogram might
represent a probability density.

One way it might be used is to estimate the performance
criterion using one realization at a time.  This provides
a means of segregating modeling uncertainty from
variability that can be attributed to non-deterministic
inputs.

It will be used in another way as well for the proposed
approach
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Selecting Candidate Designs    #2

Simulated annealing

Evolutionary algorithms
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Evaluating Candidate Designs  #3
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Comparing Candidate Designs #4

• No general approach established yet

• For the uncertainty problem, choose to maximize the
ratio

• For optimization, a similar metric has been used
  

σb
2

s w
2
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Example
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• Objective for the base-case analysis is to determine whether or not
to replace the present sub-assembly with a new design based on
the expected degradation during re-entry

• The temperature is assumed to be ‘uniformily distributed’
throughout the specified range

• The frequencies are expected to occur in approximately equal
proportion throughout the specified range

• The distribution of degradation is computed as:

Example (base-case)

  
p z( ) = IÚ z, IÚ r x1, x2( ), T( )r x1, x2( )- T( )

c
dx1( )dFx 2

(x2 )

Where c=2, T=10 and  I(v1,v2)={1   if    v1 > v2  ;   0 otherwise}.
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Example (other cases)

1 Change the temperature (x2) distribution to a truncated
normal

2 Change the degradation parameters to c=2, T=12

3 Change the problem to finding an ideal temperature
level

4 Change the design size to 5 (additional) samples

5 Change the form of the response model
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    r' (x1,x2 ) = b0 + b1x1 + b2 x2 + b 3x1x2 + b4 x1
2 + b5 x2

2 + e(x1, x2 )

Estimate Made using the Response Model:

Response Modeling
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Contours of Mean and Standard
Deviation
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Some of the Possible Responses
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Base Case Analysis

£     Design Locations
í     Previous (Actual) Data
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Normally Distributed Temperature

�      Design Locations
£    Base Case Design 
í    Previous (Actual) Data
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More ‘Harsh’ Degradation Parameters

�      Design Locations
£    Base Case Design 
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Minimization Problem

�      Design Locations
£    Base Case Design 
í    Previous (Actual) Data
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5 Design Points

�      Design Locations
£    Base Case Design 
í    Previous (Actual) Data
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Alternative Model (Linear)

�      Design Locations
£    Base Case Design 
í    Previous (Actual) Data
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Alternative Model (Kriging)

�      Design Locations
£    Base Case Design 
í    Previous (Actual) Data
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Shock Wave Physics
Consider the following shock wave experiment, which can be
performed with explosive configurations, or gas guns, or
other controlled means of acceleration.

V

V = Impact Velocity

“Impactor” “Target”

Inputs:

1)  Numerical Parameters

2)  Impactor Material Parameters

3)  Target Material Parameters 

Outputs:

1)  Shock Velocity

2)  Particle Velocity

3)  Parameters of the empirical relationship above
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Neutron Generator Application

Inputs:

1)  Center of Gravity

2)  Bolt Tightness

3)  Foam Composition 

Outputs:

1)  Response to Shock
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Firing Set Behavioral Model
Application
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The Inverse Problem
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Model Validation
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Applications Involving different
Modeling Assumptions
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Summary

• A good computer experimental design can reduce costs
substantially by minimizing response modeling
uncertainty

• The proposed approach accomplishes this task for very
general types of computer analyses

• Testing for low-dimensional problems has provided
promising results; Work on higher dimensional
problems is in progress.


